Neural Network Learning: Theoretical Foundations Chapter 12 and 13

Martin Anthony and Peter L. Bartlett

Presented by Ilsang Ohn August 25, 2017

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

outline

12. Bounding Covering Numbers with Dimensions

- 12.1 Introduction
- 12.2 Packing Numbers
- 12.3 Bounding with the Pseudo-Dimension
- 12.4 Bounding with the Fat Shattering Dimension
- 12.5 Comparing the Two Approaches

13. The Sample Complexity of Classification Learning

- 13.1 Large Margin SEM Algorithms
- 13.2 Large Margin SEM Algorithms as Learning Algorithms

- 13.3 Lower Bounds for Certain Function Classes
- 13.4 Using the Pseudo-Dimension
- 13.5 Remarks

outline

12. Bounding Covering Numbers with Dimensions

- 12.1 Introduction
- 12.2 Packing Numbers
- 12.3 Bounding with the Pseudo-Dimension
- 12.4 Bounding with the Fat Shattering Dimension
- 12.5 Comparing the Two Approaches

13. The Sample Complexity of Classification Learning

- 13.1 Large Margin SEM Algorithms
- 13.2 Large Margin SEM Algorithms as Learning Algorithms

- 13.3 Lower Bounds for Certain Function Classes
- 13.4 Using the Pseudo-Dimension
- 13.5 Remarks

- Pseudo-dimension and fat-shattering dimension, are generalizations of the VC-dimension
- Covering numbers are generalizations of the growth function.
- The pseudo-dimension and fat-shattering dimension are used to bound covering numbers and hence to bound the sample complexity and estimation error classification learning.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Definition Let (A, d) be a metric space. Given $W \subset A$ and a positive number ϵ , a subset $C \subset W$ is called a ϵ -cover of W if for any $w \in W$, there is $c \in C$ such that $d(w, c) < \epsilon$.

Definition A ϵ -covering number of W denoted by $\mathcal{N}(\epsilon, W, d)$, is the minimal cardinality of an ϵ -cover of W.

Definition Let F be a set of functions from a domain X and let k be a positive integer. An uniform ϵ -covering number is defined as

$$\mathcal{N}_{\infty}(\epsilon, F, k) = \max\{\mathcal{N}(\epsilon, F_{|x}, d_{\infty}) : x \in X^k\}.$$

Definition 11.1 Let F be a set of real-valued functions mapping from a domain X and suppose that $S = \{x_1, x_2, \ldots, x_m\} \subseteq X$. Then S is pseudo-shattered by F if there are real number r_1, r_2, \ldots, r_m such that for each $b \in \{0, 1\}^m$ there is a function $f_b \in F$ with $\operatorname{sign}(f_b(x_i) - r_i) = b_i$ for $1 \le i \le m$. We say that $r = (r_1, r_2, \ldots, r_m)$ witnesses the shattering.

Definition 11.2 Suppose that F is a set of real-valued functions mapping from a domain X. Then F has pseudo-dimension d if d is the maximum cardinality of a subset S of X that is pseudo-shattered by F. If no such maximum exists, we say that F has infinite pseudo-dimension. The pseudo-dimension of F is denoted Pdim(F).

Definition 11.10 Let F be a set of real-valued functions mapping from a domain X and suppose that $S = \{x_1, x_2, \ldots, x_m\} \subseteq X$. Suppose also that γ is a positive real number. Then S is γ -shattered by F if there are real numbers r_1, r_2, \ldots, r_m such that for each $b \in \{0, 1\}^m$ there is a function $f_b \in F$ with

$$f_b(x_i) \ge r_i + \gamma$$
 if $b_i = 1$, $f_b(x_i) \le r_i - \gamma$ if $b_i = 0$, for $1 \le i \le m$.

Definition 11.11 Suppose that F is a set of real-valued functions mapping from a domain X and that $\gamma > 0$. Then F has γ -dimension d if d is the maximum cardinality of a subset S of X that is γ -shattered by F. If no such maximum exists, we say that F has infinite γ -dimension. The γ -dimension of F is denoted fat_F(γ).

Theorem 11.13 Suppose that F is a set of real-valued functions. Then,

- 1 For all $\gamma > 0$, $fat_F(\gamma) \le Pdim(F)$.
- **2** If a finite set S is pseudo-shattered then there is γ_0 such that for all $\gamma < \gamma_0$, S is γ -shattered.

- **3** The function $fat_F(\gamma)$ is non-increasing with γ .
- Pdim $(F) = \lim_{\gamma \downarrow 0} \operatorname{fat}_{F}(\gamma)$ (where both sides may be infinite).

Definition Let (A, d) be a metric space. Given $W \subset A$ and a positive number ϵ , a subset $P \subset W$ is said to be ϵ -separated or to be an ϵ -packing of W, if for all distinct $x, y \in P$, $d(x, y) > \epsilon$.

Definition A ϵ -packing number of W denoted by $\mathcal{M}(\epsilon, W, d)$, is the maximum cardinality of an ϵ -separated subset of W.

Definition Let *H* be a set of functions from a domain *X* and let *k* be a positive integer. An uniform ϵ -packing number is defined as

$$\mathcal{M}_{p}(\epsilon, H, k) = \max\{\mathcal{M}(\epsilon, H_{|x}, d_{p}) : x \in X^{k}\}.$$

for $p = 1, 2, \infty$.

Theorem 12.1 Let (A, d) be a metric space. Then for all positive ϵ , and for every subset $W \subset A$, the covering numbers and packing numbers satisfy

 $\mathcal{M}(2\epsilon, W, d) \leq \mathcal{N}(\epsilon, W, d) \leq \mathcal{M}(\epsilon, W, d)$

Proof

- If M is a 2ε-separated subset of W and N is a ε-cover of W, then N must select a point within ε distance of each of the points in M. These points will necessarily be distinct since points in M are at least 2ε apart. Thus |M| ≤ |N|.
- If M is a maximal ε-separated subset of W then M has to be an ε-cover. Because if it is not, then there is a point w ∈ W such that there is no point of M within a distance of ε from w. In that case, w can be added to M while still keeping it ε-separated. This violates the maximality of M. Thus, N(ε, W, d) ≤ |M|.

Theorem 12.2 Let *F* be a set of real-valued functions from a domain *X* to the bounded interval [0, B]. Let *d* be a pseudo-dimension of *F*. Then for any $\epsilon > 0$,

$$\mathcal{N}_{\infty}(\epsilon, F, m) \leq \sum_{i=1}^{d} {m \choose i} \left(\frac{B}{\epsilon}\right)^{i}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

which is less than $(emB/(\epsilon d))^d$ for $m \ge d$.

Proof of Theorem 12.2

For a positive real number α , define Q_{α} as

$$Q_{\alpha}(u) = \alpha \left\lfloor \frac{u}{\alpha} \right\rfloor$$

Lemma 12.3 Let *F* be a set of real-valued functions from a domain *X* to the interval [0,1]. Then for any $\epsilon > 0$, any positive integers *m* and any $0 < \alpha \le \epsilon$,

$$\mathcal{M}_{\infty}(\epsilon, F, m) \leq \mathcal{M}_{\infty}\left(\alpha \left\lfloor \frac{\epsilon}{\alpha} \right\rfloor, \mathcal{Q}_{\alpha}(F), m\right)$$

where $Q_{\alpha}(F) = \{Q_{\alpha}(f) : f \in F\}$ with the function $Q_{\alpha}(f)$ defined as

$$(Q_{\alpha}(f))(x) = Q_{\alpha}(f(x))$$

which maps from X into the finite subset $\{0, \alpha, 2\alpha, \dots, \lfloor 1/\alpha \rfloor \alpha\}$. In particular

$$\mathcal{M}_{\infty}(\epsilon, F, m) \leq \max_{x \in X^m} \left| Q_{\epsilon}(F)_{|x} \right|$$

Proof of Lemma 12.3 For
$$x = (x_1, ..., x_m)$$
, since
 $|Q_{\alpha}(b) - Q_{\alpha}(a)| \ge Q_{\alpha}(|b - a|)$,
 $d_{\infty}(f_x, g_x) \ge \epsilon \Leftrightarrow |f(x_i) - g(x_i)| \ge \epsilon$ for some $i = 1, ..., m$
 $\Rightarrow |(Q_{\alpha}(f))(x_i) - (Q_{\alpha}(g))(x_i)| \ge \epsilon \left\lfloor \frac{\epsilon}{\alpha} \right\rfloor$ for some $i = 1, ..., m$
 $\Leftrightarrow d_{\infty}((Q_{\alpha}(f))_x, (Q_{\alpha}(g))_x) \ge \epsilon \left\lfloor \frac{\epsilon}{\alpha} \right\rfloor$

The second inequality follows on substituting $\alpha=\epsilon$ since

$$\mathcal{M}(\epsilon, Q_{\epsilon}(F)_{|x}, m) \leq \left| Q_{\epsilon}(F)_{|x} \right|$$

Lemma (Theorem 12.4) Suppose that *H* is a set of functions from a finite set *X* with |X| = m to a finite set $Y \subset \mathbb{R}$ with |Y| = N and that $\mathsf{Pdim}(H) \leq d$. Then

$$|H| \leq \sum_{i=0}^d \binom{m}{i} (N-1)^i$$

Without the condition that $Pdim(H) \le d$, $|H| = N^m = \sum_{i=0}^m {m \choose i} (N-1)^i$. Suppose that there are $S = \{x_1, \ldots, x_d, x_{d+1}\} \subset X$ and $h \in H$ such that $h(x_i) \ne h(x_j)$ for all $i \ne j \in \{1, \ldots, d+1\}$, then $Pdim(H) \ge d+1$.

Proof of Theorem 12.2 Applying Theorem 12.4 with $H = Q_{\epsilon}(F)_{|x}$ which maps into the finite set of cardinality $N = 1 + \lfloor 1/\epsilon \rfloor$, we obtain

$$\mathcal{M}_{\infty}(\epsilon, F, m) \leq \max_{x \in X^{m}} \left| \mathcal{Q}_{\epsilon}(F)_{|x} \right| \leq \sum_{i=0}^{d} \binom{m}{i} \left\lfloor \frac{1}{\epsilon} \right\rfloor^{i}$$

where $d = \text{Pdim}(Q_{\epsilon}(F)_{|x}) \leq \text{Pdim}(Q_{\epsilon}(F)) \leq \text{Pdim}(F)$ by Theorem 11.3 since $Q_{\epsilon}(\cdot)$ is non-decreasing.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Bounding with the Fat Shattering Dimension: A general upper bound

Theorem 12.7 Let *F* be a set of functions from a domain *X* to the bounded interval [0, B]. Let $d = fat_F(\epsilon/4)$. Then for any $\epsilon > 0$,

$$\mathcal{M}_{\infty}(\epsilon, F, m) < 2(mb^2)^{\lceil \log_2 y \rceil}$$

where $b = \lfloor 2B/\epsilon \rfloor$ and $y = \sum_{i=1}^{d} {m \choose i} b^{i}$.

Theorem 12.8 Let *F* be a set of functions from a domain *X* to the bounded interval [0, B]. Let $d = \operatorname{fat}_F(\epsilon/4)$. Then any $\epsilon > 0$ and for all $m \ge d$

$$\mathcal{N}_{\infty}(\epsilon, F, m) < 2\left(\frac{4mB^2}{\epsilon^2}\right)^{d\log_2(4eBm/(d\epsilon))}$$

Proof of Theorem 12.7 By Lemma 12.3 with $\alpha = \epsilon/2$

$$\mathcal{M}_{\infty}(\epsilon, F, m) \leq \mathcal{M}_{\infty}(\epsilon, Q_{\epsilon/2}(F), m).$$

By a simple rescaling, Lemma 12.9 (next slide) shows that

$$\mathcal{M}(\epsilon, Q_{\epsilon/2}(F), d_{\infty}) \leq 2(mb^2)^{\lceil \log_2 y' \rceil}$$

where

$$y' = \sum_{i=1}^{\mathsf{fat}_{Q_{\epsilon/2}(F)}(\epsilon/2)} \binom{m}{i} b^i \leq \sum_{i=1}^{\mathsf{fat}_F(\epsilon/4)} \binom{m}{i} b^i = y$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Lemma 12.9 Let $Y = \{0, 1, ..., b\}$, and suppose |X| = m and $H \subset Y^X$ has $fat_H(1) = d$ Then $\mathcal{M}(2, H, d_\infty) \leq 2(mb^2)^{\lceil \log_2 y \rceil}$

where $y = \sum_{i=1}^{d} {m \choose i} b^{i}$.

Proof of Lemma 12.9 Fix $b \ge 3$ as the result trivially holds otherwise. For given X and $G \subset Y^X$, define $T_{X,G}$ as

 $T_{X,G} = \{(A, r) : G \text{ 1-shatters } \emptyset \neq A \subset X, \text{ witnessed by } r : A \to Y\}$

For $k \ge 2$ and $m \ge 1$, define t(k, m) as

 $t(k,m) = \min\{|T_{X,G}| : |X| = m, G \subset Y^X, |G| = k, G \text{ is 2-separated}\}$

or take t(k, m) to be infinite if the minimum is over the empty set.

Proof of Lemma 12.9 Note that the number of pairs (A, r) with $A \neq \emptyset$ and $|A| \leq d$ is less than

$$y = \sum_{i=1}^d \binom{m}{i} b^i$$

If $t(k, m) \ge y$, then every 2-separated set G with |G| = k 1-shatters some A with |A| > d i.e., fat_G(1) > d. But fat_H(1) = d, so if $t(k, m) \ge y$ then $\mathcal{M}(2, H, d_{\infty}) < k$. It suffices to prove that

$$t\left(2(mb^2)^{\lceil \log_2 y \rceil}, m\right) \geq y$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

for all $d \ge 1$ and all $m \ge 1$.

Proof of Lemma 12.9 Prove $t(2(mb^2)^{\lceil \log_2 y \rceil}, m) \ge y$ for all $d \ge 1$ and all $m \ge 1$.

- Let G be a 2-separated set with $|G| = k = 2(mb^2)^{\lceil \log_2 y \rceil}$. Split G into K/2 arbitrary pairs.
- One can show (pigeonhole) that there are $x_0 \in X$, i, j with $j \ge i + 2$ such that at least $k/(mb^2)$ of these pairs, say (g_1, g_2) , satisfy $(g_1(x_0), g_2(x_0)) = (i, j)$. Let G_1 be a set of such g_1 's and G_2 a set of such g_2 's. Then $|G_1| = |G_2| > k/(mb^2)$ and they are 2-separated on $X \setminus \{x_0\}$.
- Hence there are at least $t(\lfloor k/mb^2 \rfloor, m-1)$ pairs (A, r) such that $G_1(G_2)$ 1-shatters $A \in X \setminus \{x_0\}$ witnessed by r.
- If both G_1 and G_2 1-shatter A witnessed by r, then G 1-shatters $A \cup \{x_0\}$, witnessed by r' with r'(x) = r(x) if $x \in X \setminus \{x_0\}$ and $r'(x_0) = \lfloor (i+j)/2 \rfloor$. Hence

$$t(k,m) \geq 2t\left(\left\lfloor \frac{k}{mb^2} \right\rfloor, m-1\right).$$

The proof follows by induction.

Lemma If $\alpha < 2\epsilon$ then

$$fat_{Q_{\alpha}(F)}(\epsilon) \leq fat_{F}(\epsilon - \alpha/2)$$

and, in particular,

$$\mathsf{fat}_{\mathcal{Q}_{\epsilon/2}(\mathcal{F})}(\epsilon/2) \leq \mathsf{fat}_{\mathcal{F}}(\epsilon/4)$$

Proof

$$(Q_{\alpha}(f_b))(x_i) - r_i \ge \epsilon$$
 if $b_i = 1$
 $(Q_{\alpha}(f_b))(x_i) - r_i \le -\epsilon$ if $b_i = 0$

implies

$$f_b(x_i) - r_i \ge \epsilon$$
 if $b_i = 1$
 $f_b(x_i) - r_i \le -\epsilon + \alpha$ if $b_i = 0$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Bounding with the Fat Shattering Dimension: A general lower bound

Theorem 12.10 Let F be a set of real-valued functions and let $\epsilon > 0$. Let $d = \operatorname{fat}_{F}(\epsilon/4)$. Then for all $m \ge \operatorname{fat}_{F}(16\epsilon)$,

 $\mathcal{N}_{\infty}(\epsilon, F, m) \geq \mathcal{N}_{1}(\epsilon, F, m) \geq e^{\operatorname{fat}_{F}(16\epsilon)/8}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Lemma Let $d = \operatorname{fat}_F(16\epsilon)$. If $m \ge d$, then

$$\mathcal{N}_1(\epsilon, F, m) \geq \mathcal{N}_1(2\epsilon, F, d).$$

Proof Let m = kd + r where $k \ge 1$ and $0 \le r < d$. Let z be the sample of length m obtained by concatenating k copies of x and adjoining the first r elements of x. For $f, g \in F$,

$$\begin{split} d_1(f_{|z},g_{|z}) &= \frac{1}{m}\sum_{i=1}^m |f(z_i) - g(z_i)| \\ &= \frac{k}{kd+r}\sum_{i=1}^d |f(x_i) - g(x_i)| + \frac{1}{kd+r}\sum_{i=1}^r |f(x_i) - g(x_i)| \\ &\geq \frac{kd}{kd+r}d_1(f_{|x},g_{|x}) \end{split}$$

Since kd/(kd+r) > 1/2, $d_1(f_{|z}, g_{|z}) < \epsilon$ implies $d_1(f_{|x}, g_{|x}) < 2\epsilon$.

・ロト ・回 ・ ・ ヨ ・ ・ 回 ・ ・ の へ ()・

Proof of Theorem 12.10

Lemma If $d = \operatorname{fat}_F(16\epsilon)$, then $\mathcal{N}_1(2\epsilon, F, d) \ge e^{d/8}$

Proof Fix a sample x of length d that is 16ϵ -shattered. There is $r \in \mathbb{R}^d$ such that for every $b \in \{0,1\}^d$, there is $f_b \in F$ such that

$$f_b(x_i) \ge r_i + 16\epsilon$$
 if $b_i = 1$, $f_b(x_i) \le r_i - 16\epsilon$ if $b_i = 0$ for $i = 1..., d$

Let $G = \{f_b : b \in \{0,1\}^d\}$ be such a set of 2^d functions. Suppose C is a 2ϵ cover of $F_{|x}$. For each $c \in C$, there is $g \in G$ satisfying $d_1(c_{|x}, g_{|x}) < 2\epsilon$ and so

$$\left\{g'\in G: d_1(g'_{|x},c_{|x})<2\epsilon\right\}\subset \left\{g'\in G: d_1(g'_{|x},g_{|x})<4\epsilon\right\}$$

One can show that $\left|\left\{g' \in G : d_1(g'_{|x}, g_{|x}) < 4\epsilon\right\}\right| \le 2^d e^{-d/8}$ which means that each element of *C* covers at most $2^d e^{-d/8}$ elements of *G*. Hence

$$|C| \geq \frac{|G|}{2^d e^{-d/8}} = \epsilon^{d/8}.$$

◆□ > ◆□ > ◆臣 > ◆臣 > 三臣 - のへで

Theorem 12.11 Let F be a set of functions from a domain X to the bounded interval [0, B]. Then for any $\epsilon > 0$, if $m \ge \text{fat}_F(\epsilon/r) \ge 1$,

$$rac{\log_2 \epsilon}{8} \operatorname{fat}_F(16\epsilon) \le \log_2 \mathcal{N}_1(\epsilon, F, m)$$

 $\le \log_2 \mathcal{N}_\infty(\epsilon, F, m) \le 3\operatorname{fat}_F(\epsilon/4) \log_2^2 \left(rac{4eBm}{\epsilon}
ight).$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

REMARK. If a class has finite fat-shattering dimension, then the covering number is a sub-exponential function of m.

Theorem 12.12 Let F be a set of functions of total variation at most V, mapping from the interval [0,1] into [0,1]. Then for any $\epsilon > 0$ and for all m,

$$\mathcal{N}_{\infty}(\epsilon, F, m) < 2 \left(\frac{4m}{\epsilon^2}\right)^{(1+2V/\epsilon)\log_2(2em/V)}$$

Proof. Recall that $\operatorname{fat}_F(\gamma) = 1 + \lfloor V/(2\gamma) \rfloor$. Then by Theorem 12.8 with B = 1 and $d = 1 + \lfloor 2V/\epsilon \rfloor$, we have

$$\mathcal{N}_{\infty}(\epsilon, F, m) \leq 2 \left(\frac{4mB^2}{\epsilon^2}\right)^{d \log_2(4\epsilon Bm/(d\epsilon))} < 2 \left(\frac{4m}{\epsilon^2}\right)^{(1+2V/\epsilon) \log_2(2\epsilon m/V)}$$

Example

Theorem 12.13 Let *F* be a set of real-valued functions. Let $\gamma > 0$ and let $d = fat_F(\gamma/8)$. Then

$$\mathcal{N}_{\infty}(\gamma/2,\pi_{\gamma}(F),2m) \leq 2(128m)^{d\log_2(32em/d)}$$

where $\pi_{\gamma}(u) = \max(1/2 - \gamma, \min(1/2 + \gamma, u)).$

Proof We may assume $\pi_{\gamma}(F)$ maps into $[0, 2\gamma]$. Then by Theorem 12.8 with $B = 2\gamma$ and $\epsilon = \gamma/2$, we have

$$\mathcal{N}_{\infty}(\gamma/2,\pi_{\gamma}(F),m) \leq 2\left(rac{4mB^2}{\epsilon^2}
ight)^{d\log_2(4eBm/(d\epsilon))} = 2(64m)^{d\log_2(32em/d)}.$$

 Remark The upper bound in Theorem 10.3

$$egin{aligned} \mathcal{P}^m \left(\exists f \in \mathcal{F} : ext{er}_\mathcal{P}(f) \geq \hat{ ext{er}}_z^\gamma(f) + \epsilon
ight) &\leq 2\mathcal{N}_\infty(\gamma/2, \pi_\gamma(\mathcal{F}), 2m) e^{-\epsilon^2 m/8} \ &\leq 4(128m)^{d\log_2(32em/d)} e^{-\epsilon^2 m/8} \end{aligned}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Comparing the Two Approaches

• We have seen that if F is uniformly bounded,

$$\mathcal{N}_{\infty}(\epsilon, F, m) \leq \left(\frac{c_1 m}{\epsilon \mathsf{Pdim}(F)}\right)^{\mathsf{Pdim}(F)}$$

and

$$\mathcal{N}_{\infty}(\epsilon, F, m) \leq \left(\frac{c_2 m}{\epsilon^2}\right)^{\mathsf{fat}_F(\epsilon/4) \log_2(c_3 m/(\mathsf{fat}_F(\epsilon/4)\epsilon))} = \left(\frac{c_3 m}{\epsilon \mathsf{fat}_F(\epsilon/4)}\right)^{c_4 \mathsf{fat}_F(\epsilon/4)}$$

for some constants c_1, c_2, c_3 and c_4 .

• Theorem 11.13 (a):

$$\operatorname{fat}_{F}(\epsilon/4) \leq \operatorname{Pdim}(F).$$

- If the two are equal then the first bound is better.
- However, it is possible for fat_F(ε/4) to be significantly less than Pdim(F). For example for the class F of bounded variation functions, Pdim(F) is infinite but fat_F(ε/4) is finite.

outline

12. Bounding Covering Numbers with Dimensions

- 12.1 Introduction
- 12.2 Packing Numbers
- 12.3 Bounding with the Pseudo-Dimension
- 12.4 Bounding with the Fat Shattering Dimension
- 12.5 Comparing the Two Approaches

13. The Sample Complexity of Classification Learning

- 13.1 Large Margin SEM Algorithms
- 13.2 Large Margin SEM Algorithms as Learning Algorithms

- 13.3 Lower Bounds for Certain Function Classes
- 13.4 Using the Pseudo-Dimension
- 13.5 Remarks

• For binary classification, SEM algorithms *L*, which have the property that for all *z*,

$$\hat{\operatorname{er}}_{z}(L(z)) = \min_{h \in H} \hat{\operatorname{er}}_{z}(h) = \frac{1}{m} |\{i : h(x_{i}) \neq y_{i}\}|$$

are learning algorithms when the clss H has finite VC-dimension.

• In analyzing classification learning algorithms for real-valued function classes, it is useful to consider algorithms that, given a sample and a parameter $\gamma > 0$, return hypotheses minimizing the sample error with respect to γ , which is defined as

$$\hat{\operatorname{er}}_{z}^{\gamma}(f) = rac{1}{m} |\{i : \operatorname{margin}(f(x_{i}), y_{i}) < \gamma\}|$$

where

margin
$$(f(x_i), y_i) = \begin{cases} f(x_i) - 1/2 & \text{if } y_i = 1\\ 1/2 - f(x_i) & \text{if } y_i = 0 \end{cases}$$

Definition 13.1 Suppose that F is a set of real functions defined on the domain X. Then a large margin sample error minimization algorithm (or large margin SEM algorithm) L for F takes as input a margin parameter $\gamma > 0$ and a sample $z \in \bigcup_{m=1}^{\infty} Z^m$, and returns a function from F such that for all $\gamma > 0$, all m, and all $z \in Z^m$,

$$\hat{\operatorname{er}}_{z}^{\gamma}(L(\gamma, z)) = \min_{f \in F} \hat{\operatorname{er}}_{z}^{\gamma}(f).$$

AIM. Show that the large margin SEM algorithms for a function class F are learning algorithms when F has finite fat-shattering dimension. i.e.,

For any probability distribution P on $Z = X \times \{0, 1\}$, the large margin SEM algorithm L taking as input $\gamma \in (0, 1/2]$ and a sample $z \in \bigcup_{m=1}^{\infty} Z^m$ satisfies, with probability at least $1 - \delta$,

• $\exists m_L(\epsilon, \delta, \gamma) \text{ s.t. } \forall \epsilon > 0, \operatorname{er}_P(L(z)) < \operatorname{opt}_P^{\gamma}(F) + \epsilon \text{ whenever } m \ge m_L(\epsilon, \delta, \gamma)$ where $\operatorname{opt}_P^{\gamma}(F) = \inf_{f \in F} \operatorname{er}_P^{\gamma}(f)$, or equivalently,

• $\forall m, \exists \epsilon_L(m, \delta, \gamma) \text{ s.t. } \operatorname{er}_P(L(z)) < \operatorname{opt}_P^{\gamma}(F) + \epsilon_L(m, \delta, \gamma).$

Theorem 13.2 Suppose that *F* is a set of real-valued functions defined on the domain *X* and that *L* is a large margin SEM algorithm for *F*. Suppose that $\epsilon \in (0, 1)$ and $\gamma > 0$. Then given any probability distribution *P* on *Z* for all *m*, we have

$$\mathcal{P}^m\{\operatorname{er}_{\mathcal{P}}(\mathcal{L}(\gamma,z))\geq\operatorname{opt}_{\mathcal{P}}^\gamma(\mathcal{F})+\epsilon\}\leq 2\mathcal{N}_\infty(\gamma/2,\pi_\gamma(\mathcal{F}),2m)e^{-\epsilon^m/72}+e^{-2\epsilon^2m/9}.$$

Proof With probability at least $1 - 2\mathcal{N}_{\infty}(\gamma/2, \pi_{\gamma}(F), 2m)e^{-\epsilon^m/72} - e^{-2\epsilon^2 m/9}$,

$$\mathrm{er}_{\mathcal{P}}(\mathcal{L}(\gamma,z)) < \hat{\mathrm{er}}_{z}^{\gamma}(\mathcal{L}(\gamma,z)) + \frac{\epsilon}{3} \leq \hat{\mathrm{er}}_{z}^{\gamma}(f^{*}) + \frac{\epsilon}{3} < \mathrm{er}_{\mathcal{P}}^{\gamma}(f^{*}) + \frac{2\epsilon}{3}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

where $f^* \in F$ is such that $\operatorname{er}_P^{\gamma}(f^*) < \operatorname{opt}_P^{\gamma}(F) + \epsilon/3$.

Proof of Theorem 13.2

Lemma 13.3 Suppose that f is a real-valued function defined on X, P is a probability distribution on Z, $\epsilon > 0$, $\gamma > 0$, and m is a positive integer. Then

$$P^m(\hat{\mathrm{er}}_z^\gamma(f)\geq \mathrm{er}_P^\gamma(f)+\epsilon)\leq e^{-2\epsilon^2m}$$

Lemma (Theorem 10.4, Uniform convergence)

$$P^{m}(\exists f \in F : \operatorname{er}_{P}(f) \geq \hat{\operatorname{er}}_{z}^{\gamma}(f) + \epsilon) \leq 2\mathcal{N}_{\infty}(\gamma/2, \pi_{\gamma}(F), 2m)e^{-\epsilon^{2}m/8}$$

Proof of Theorem 13.2

- Let $f^* \in F$ be such that $\operatorname{er}_P^{\gamma}(f^*) < \operatorname{opt}_P^{\gamma}(F) + \epsilon/3$. Then $\operatorname{\acute{er}}_z^{\gamma}(f^*) < \operatorname{er}_P^{\gamma}(f^*) + \epsilon/3 < \operatorname{opt}_P^{\gamma}(F) + 2\epsilon/3$ with probability at lest $1 e^{-2\epsilon^2 m/9}$.
- With probability at least $1 2\mathcal{N}_{\infty}(\gamma/2, \pi_{\gamma}(F), 2m)e^{-\epsilon^2 m/72}$, $\operatorname{er}_{P}(f) < \hat{\operatorname{er}}_{z}^{\gamma}(f) + \epsilon/3$ for all $f \in F$.
- Hence with probability $1 e^{-2\epsilon^2 m/9} 2\mathcal{N}_\infty(\gamma/2,\pi_\gamma(F),2m)e^{-\epsilon^2 m/72}$

$$\operatorname{er}_{P}(L(\gamma, z)) < \hat{\operatorname{er}}_{z}^{\gamma}(L(\gamma, z)) + \frac{\epsilon}{3} \leq \hat{\operatorname{er}}_{z}^{\gamma}(f^{*}) + \frac{\epsilon}{3} < \operatorname{opt}_{P}^{\gamma}(F) + \epsilon$$

Large Margin SEM Algorithms as Learning Algorithms

Theorem 13.4 Suppose that *F* is a set of real-valued functions defined on the domain *X* with finite fat-shattering dimension, and that *L* is a large margin SEM algorithm for *F*. Then *L* is a classification learning algorithm for *F*. Given $\delta \in (0, 1)$ and $\gamma > 0$, suppose $d = \operatorname{fat}_{\pi_{\gamma}(F)}(\gamma/8) \ge 1$. Then the estimation error of *L* satisfies

$$\epsilon_L(m,\delta,\gamma) \leq \left[rac{72}{m}\left\{d\log_2\left(rac{32em}{d}
ight)\log(128m) + \log\left(rac{6}{\delta}
ight)
ight\}
ight]^{1/2}$$

Furthermore, the sample complexity of L satisfies, for any $\epsilon \in (0,1)$,

$$m_L(\epsilon, \delta, \gamma) \leq rac{144}{\epsilon^2} \left(27d \log^2 \left(rac{3456d}{\epsilon^2}
ight) + \log \left(rac{6}{\delta}
ight)
ight).$$

Theorem 4.2 For H a set of $\{0, 1\}$ -valued functions with VC dimension d,

- $\epsilon_L(m, \delta) \leq \left[\frac{32}{m} \left\{ d \log\left(\frac{2em}{d}\right) + \log\left(\frac{4}{\delta}\right) \right\} \right]^{1/2}$
- $m_L(\epsilon, \delta) \leq \frac{64}{\epsilon^2} \left(2d \log\left(\frac{12}{\epsilon}\right) + \log\left(\frac{4}{\delta}\right) \right)$

Proof of Theorem 13.4

$$\begin{array}{l} \text{For } d = {\rm fat}_{\pi_{\gamma}(F)}(\gamma/8) \geq 1, \\ \\ P^{m}({\rm er}_{P}(L(\gamma,z)) > {\rm opt}_{P}^{\gamma}(F) + \epsilon) \\ \\ \leq 2\mathcal{N}_{\infty}(\gamma/2, \pi_{\gamma}(F), 2m)e^{-\epsilon^{m}/72} + e^{-2\epsilon^{2}m/9} \quad (\text{Thm 13.2}) \\ \\ \leq 3\max(1, \mathcal{N}_{\infty}(\gamma/2, \pi_{\gamma}(F), 2m))e^{-\epsilon^{m}/72} \\ \\ < 6(128m)^{d\log_{2}(32em/d)}e^{-\epsilon^{2}m/72} := \delta^{*} \quad (\text{Thm 12.13}) \end{array}$$

 $\delta^* \leq \delta$ when

•
$$\epsilon \ge \left[\frac{72}{m}\left\{d\log_2\left(\frac{32em}{d}\right) + \log(128m) + \log\left(\frac{6}{\delta}\right)\right\}\right]^{1/2}$$

• $m \ge \frac{72}{\epsilon^2}\left(\frac{d}{\log 2}(\log m)^2 + 14d\log m + 7d\log\left(\frac{32e}{d}\right) + \log\left(\frac{6}{\delta}\right)\right)$
Bound above $\log m$ by using the inequality $\log a \le ab - \log b - 1$ for $a, b, > 0$ and bound above $(\log m)^2$ by using the inequality $(\log a)^2 \le 6ab + 3(\log(1/b))^2$ for $a > 0, 0 < b < 1$ and $ab \ge 1$. Therefore

$$\frac{m}{2} \geq \frac{72}{\epsilon^2} \left(\frac{3d}{\log 2} \log^2 \left(\frac{1728d}{\epsilon^2 \log 2} \right) + 14d \log \left(\frac{4032d}{e\epsilon^2} \right) + 7d \log \left(\frac{32e}{d} \right) + \log \left(\frac{6}{\delta} \right) \right)$$

Theorem 13.5 Suppose that F is a set of functions mapping into the interval [0, 1] and that F is closed under addition of constants. Then, if L is any classification learning algorithm for F, the sample complexity of L satisfies

$$m_L(\epsilon, \delta, \gamma) \ge \max\left(\frac{d}{320\epsilon^2}, 2\left\lfloor \frac{1-\epsilon^2}{\epsilon^2}\log \frac{1}{8\delta(1-2\delta)} \right\rfloor\right)$$

for $0 < \epsilon < 1$, $\delta < 1/64$ and $\gamma > 0$, where $d = \mathsf{fat}_{\pi_{4\gamma}(F)}(2\gamma) \ge 1$.

Proof of Theorem 13.5

Theorem 5.4 Suppose that *H* is a set of $\{0, 1\}$ -valued functions with VC dimension *d*. For any learning algorithm *L* for *H* the sample complexity of *L* satisfies

$$m_L(\epsilon, \delta) \ge \max\left(rac{d}{320\epsilon^2}, 2\left\lfloorrac{1-\epsilon^2}{\epsilon^2}\log\left(rac{1}{8\delta(1-2\delta)}
ight)
ight
floor
ight)$$

for all 0 < ϵ < 1 and δ < 1/64.

Proof of Theorem 13.5 Construct *H* as follows.

- Choose $S \subset X$ so that $|S| = d = \operatorname{fat}_{\pi_{4\gamma}(F)}(2\gamma)$ and S is 2γ -shattered by $\pi_{4\gamma}(F)$ witnessed by $r \in [1/2 2\gamma, 1/2 + 2\gamma]^d$.
- Let $T \subset S$ be the set of x_i with $r_i \in [1/2 2\gamma, 1/2]$. WLOG, assume $|T| \ge d/2$. Then T is γ -shattered by $\pi_{2\gamma}(F)$ witnessed by $(1/2 \gamma, \dots, 1/2 \gamma)$.
- Let $F_0 \subset F$ be the set of functions $f \in F$ such that for all $x \in T$, $|f(x) - 1/2| \ge \gamma$. It is possible since F is closed under addition of constants.
- The set H of $\{0,1\}$ -valued functions on T defined by

$$H = \{x \mapsto \operatorname{sign}(f(x) - 1/2) : f \in F_0\}$$

is the set of all $\{0,1\}$ -valued functions on T, and hence $VCdim(H) \ge d/2$.

Proof of Theorem 13.5 For any *P* on *Z* and any ϵ , if $m \ge m_L(\epsilon, \delta, \gamma)$

$$P^m(\operatorname{er}_P(L(\gamma, z)) < \operatorname{opt}_P^{\gamma}(F) + \epsilon) \geq 1 - \delta$$

where we have

$$\operatorname{opt}_{P}^{\gamma}(F) = \inf_{f \in F} \operatorname{er}_{P}^{\gamma}(f) \leq \inf_{f \in F_{0}} \operatorname{er}_{P}^{\gamma}(f)$$
$$= \inf_{h \in H} \operatorname{er}_{P}(h) \quad \because \forall f \in F_{0}, |f(x) - 1/2| \geq \gamma$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲目▶ ● ④ ●

Thus $z \mapsto \operatorname{sign}(L(\gamma, z) - 1/2)$ is a learning algorithm for H with $m_L(\epsilon, \delta, \gamma)$.

From Theorems 13.4 and 13.5,

$$\frac{c_1\mathsf{fat}_{\pi_{4\gamma}(F)}(2\gamma)}{\epsilon^2} \leq m_L(\epsilon,\delta,\gamma) \leq \frac{c_2\mathsf{fat}_{\pi_{\gamma}(F)}(\gamma/8)}{\epsilon^2}.$$

- Only the behavior of functions in F near the threshold value 1/2 influences the complexity of F for classification learning, whereas the fat-shattering dimension in these bounds measures the complexity of functions in $\pi_{\gamma}(F)$ over the whole of their $[1/2 \gamma, 1/2 + \gamma]$ range.
- The condition that *F* is closed under addition of constants ensures that the complexity of *F* is uniform over this range.
- Let F = {f : N → [1/2 + α, ∞)} for α < 0. Then fat_{πγ(F)}(γ/8) is infinite but there is a classification learning algorithm for F. The class F is complex, but the complexity of the functions in F is restricted to a range that does not include the threshold, and hence this complexity is irrelevant for classification learning.

Using the Pseudo-Dimension

Theorem 13.6 If *F* is a set of real-valued functions with finite pseudo-dimension, and *L* is a large margin SEM algorithm for *F*. Let d = Pdim(F). For all $\delta \in (0, 1)$, all *M*, and $\gamma > 0$, its estimation error satisfies

$$\epsilon_L(m,\delta,\gamma) \leq \left[rac{72}{m}\left\{d\log\left(rac{8em}{d}
ight) + \log\left(rac{3}{\delta}
ight)
ight\}
ight]^{1/2}$$

REMARK (Theorem 4.2) For H a set of $\{0,1\}$ valued functions with VC dimension d,

$$\epsilon_L(m,\delta) \leq \left[rac{32}{m}\left\{d\log\left(rac{2em}{d}
ight) + \log\left(rac{4}{\delta}
ight)
ight\}
ight]^{1/2}$$

Let $H = \{x \mapsto \text{sign}(f(x) - 1/2) : f \in F\}$. Since $\text{VCdim}(H) \leq \text{Pdim}(F)$ and $\text{opt}_P(H) \leq \text{opt}_P^{\gamma}(F)$, Theorem 13.6 is weaker than the VC-dimension results.

But using the fat-shattering dimension can give a significant improvement.

$$\epsilon_L(m,\delta,\gamma) \leq \left[rac{72}{m}\left\{d\log_2\left(rac{32em}{d}
ight)\log(128m) + \log\left(rac{6}{\delta}
ight)
ight\}
ight]^{1/2}$$

where $d = \operatorname{fat}_{\pi_{\gamma}(F)}(\gamma/8)$. In next chapter, we see examples of neural network classes that have finite fat-shattering dimension, but whose thresholded versions have infinite VC-dimension.

Theorem 13.5 implies that the rate of uniform convergence of $\operatorname{er}_P(f)$ to $\operatorname{\acute{er}}_z^{\gamma}(f)$ can be no faster than $1/\sqrt{m}$. But as the result of Section 5.5, $\operatorname{er}_P(f)$ converges more quickly to $(1 + \alpha) \operatorname{\acute{er}}_z^{\gamma}(f)$ for any fixed $\alpha > 0$.

Theorem 13.7 Suppose that *F* is a set of real-valued functions defined on *X*. Then for given any probability distribution *P* on *Z*, any $\gamma > 0$ and any $\alpha, \beta > 0$,

 $P^{m}\left(\exists f \in F : \operatorname{er}_{P}(f) > (1+\alpha)\widehat{\operatorname{er}}_{z}^{\gamma}(f) + \beta\right) \leq 4\mathcal{N}_{\infty}(\gamma/2, \pi_{\gamma}(F), 2m)e^{-\alpha\beta m/(4(1+\alpha))}.$

Theorem 10.4

$$P^m (\exists f \in F : \operatorname{er}_P(f) \geq \operatorname{\acute{er}}_z^\gamma(f) + \epsilon) \leq 2\mathcal{N}_\infty(\gamma/2, \pi_\gamma(F), 2m) e^{-\epsilon^2 m/8}.$$