
Neural Network Learning: Theoretical Foundations
Chapter 12 and 13

Martin Anthony and Peter L. Bartlett

Presented by Ilsang Ohn
August 25, 2017



outline

12. Bounding Covering Numbers with Dimensions
12.1 Introduction
12.2 Packing Numbers
12.3 Bounding with the Pseudo-Dimension
12.4 Bounding with the Fat Shattering Dimension
12.5 Comparing the Two Approaches

13. The Sample Complexity of Classification Learning
13.1 Large Margin SEM Algorithms
13.2 Large Margin SEM Algorithms as Learning Algorithms
13.3 Lower Bounds for Certain Function Classes
13.4 Using the Pseudo-Dimension
13.5 Remarks



outline

12. Bounding Covering Numbers with Dimensions
12.1 Introduction
12.2 Packing Numbers
12.3 Bounding with the Pseudo-Dimension
12.4 Bounding with the Fat Shattering Dimension
12.5 Comparing the Two Approaches

13. The Sample Complexity of Classification Learning
13.1 Large Margin SEM Algorithms
13.2 Large Margin SEM Algorithms as Learning Algorithms
13.3 Lower Bounds for Certain Function Classes
13.4 Using the Pseudo-Dimension
13.5 Remarks



Bounding Covering Numbers with Dimensions

• Pseudo-dimension and fat-shattering dimension, are generalizations of the
VC-dimension

• Covering numbers are generalizations of the growth function.

• The pseudo-dimension and fat-shattering dimension are used to bound
covering numbers and hence to bound the sample complexity and estimation
error classification learning.



Covering Numbers

Definition Let (A, d) be a metric space. Given W ⊂ A and a positive number ε,
a subset C ⊂W is called a ε-cover of W if for any w ∈W , there is c ∈ C such
that d(w , c) < ε.

Definition A ε-covering number of W denoted by N (ε,W , d), is the minimal
cardinality of an ε-cover of W .

Definition Let F be a set of functions from a domain X and let k be a positive
integer. An uniform ε-covering number is defined as

N∞(ε,F , k) = max{N (ε,F|x , d∞) : x ∈ X k}.



The Pseudo Dimension

Definition 11.1 Let F be a set of real-valued functions mapping from a domain
X and suppose that S = {x1, x2, . . . , xm} ⊆ X . Then S is pseudo-shattered by F
if there are real number r1, r2, . . . , rm such that for each b ∈ {0, 1}m there is a
function fb ∈ F with sign(fb(xi )− ri ) = bi for 1 ≤ i ≤ m. We say that
r = (r1, r2, . . . , rm) witnesses the shattering.

Definition 11.2 Suppose that F is a set of real-valued functions mapping from a
domain X . Then F has pseudo-dimension d if d is the maximum cardinality of a
subset S of X that is pseudo-shattered by F . If no such maximum exists, we say
that F has infinite pseudo-dimension. The pseudo-dimension of F is denoted
Pdim(F ).



The Fat-Shattering Dimension

Definition 11.10 Let F be a set of real-valued functions mapping from a domain
X and suppose that S = {x1, x2, . . . , xm} ⊆ X . Suppose also that γ is a positive
real number. Then S is γ-shattered by F if there are real numbers r1, r2, . . . , rm
such that for each b ∈ {0, 1}m there is a function fb ∈ F with

fb(xi ) ≥ ri + γ if bi = 1, fb(xi ) ≤ ri − γ if bi = 0, for 1 ≤ i ≤ m.

Definition 11.11 Suppose that F is a set of real-valued functions mapping from
a domain X and that γ > 0. Then F has γ-dimension d if d is the maximum
cardinality of a subset S of X that is γ-shattered by F . If no such maximum
exists, we say that F has infinite γ-dimension. The γ-dimension of F is denoted
fatF (γ).



Relating Fat-Shattering Dimension and Pseudo-Dimension

Theorem 11.13 Suppose that F is a set of real-valued functions. Then,

1 For all γ > 0, fatF (γ) ≤ Pdim(F ).

2 If a finite set S is pseudo-shattered then there is γ0 such that for all γ < γ0,
S is γ-shattered.

3 The function fatF (γ) is non-increasing with γ.

4 Pdim(F ) = limγ↓0 fatF (γ) (where both sides may be infinite).



Packing Numbers

Definition Let (A, d) be a metric space. Given W ⊂ A and a positive number ε,
a subset P ⊂W is said to be ε-separated or to be an ε-packing of W , if for all
distinct x , y ∈ P, d(x , y) > ε.

Definition A ε-packing number of W denoted by M(ε,W , d), is the maximum
cardinality of an ε-separated subset of W .

Definition Let H be a set of functions from a domain X and let k be a positive
integer. An uniform ε-packing number is defined as

Mp(ε,H, k) = max{M(ε,H|x , dp) : x ∈ X k}.

for p = 1, 2,∞.



Packing Numbers

Theorem 12.1 Let (A, d) be a metric space. Then for all positive ε, and for
every subset W ⊂ A, the covering numbers and packing numbers satisfy

M(2ε,W , d) ≤ N (ε,W , d) ≤M(ε,W , d)

Proof

1 If M is a 2ε-separated subset of W and N is a ε-cover of W , then N must
select a point within ε distance of each of the points in M. These points will
necessarily be distinct since points in M are at least 2ε apart. Thus
|M| ≤ |N|.

2 If M is a maximal ε-separated subset of W then M has to be an ε-cover.
Because if it is not, then there is a point w ∈W such that there is no point
of M within a distance of ε from w . In that case, w can be added to M
while still keeping it ε-separated. This violates the maximality of M. Thus,
N (ε,W , d) ≤ |M|.



Bounding with the Pseudo-Dimension

Theorem 12.2 Let F be a set of real-valued functions from a domain X to the
bounded interval [0,B]. Let d be a pseudo-dimension of F . Then for any ε > 0,

N∞(ε,F ,m) ≤
d∑

i=1

(
m

i

)(
B

ε

)i

which is less than (emB/(εd))d for m ≥ d .



Proof of Theorem 12.2

For a positive real number α, define Qα as

Qα(u) = α
⌊ u
α

⌋
Lemma 12.3 Let F be a set of real-valued functions from a domain X to the
interval [0, 1]. Then for any ε > 0, any positive integers m and any 0 < α ≤ ε,

M∞(ε,F ,m) ≤M∞
(
α
⌊ ε
α

⌋
,Qα(F ),m

)
where Qα(F ) = {Qα(f ) : f ∈ F} with the function Qα(f ) defined as

(Qα(f ))(x) = Qα(f (x))

which maps from X into the finite subset {0, α, 2α, . . . , b1/αcα}. In particular

M∞(ε,F ,m) ≤ max
x∈Xm

∣∣Qε(F )|x
∣∣



Proof of Theorem 12.2

Proof of Lemma 12.3 For x = (x1, . . . , xm), since
|Qα(b)− Qα(a)| ≥ Qα(|b − a|),

d∞(fx , gx) ≥ ε⇔ |f (xi )− g(xi )| ≥ ε for some i = 1, . . . ,m

⇒ |(Qα(f ))(xi )− (Qα(g))(xi )| ≥ ε
⌊ ε
α

⌋
for some i = 1, . . . ,m

⇔ d∞((Qα(f ))x , (Qα(g))x) ≥ ε
⌊ ε
α

⌋
The second inequality follows on substituting α = ε since

M(ε,Qε(F )|x ,m) ≤
∣∣Qε(F )|x

∣∣



Proof of Theorem 12.2

Lemma (Theorem 12.4) Suppose that H is a set of functions from a finite set X
with |X | = m to a finite set Y ⊂ R with |Y | = N and that Pdim(H) ≤ d . Then

|H| ≤
d∑

i=0

(
m

i

)
(N − 1)i .

Without the condition that Pdim(H) ≤ d , |H| = Nm =
∑m

i=0

(
m
i

)
(N − 1)i . Suppose that

there are S = {x1, . . . , xd , xd+1} ⊂ X and h ∈ H such that h(xi ) 6= h(xj) for all
i 6= j ∈ {1, . . . , d + 1}, then Pdim(H) ≥ d + 1.



Proof of Theorem 12.2

Proof of Theorem 12.2 Applying Theorem 12.4 with H = Qε(F )|x which maps
into the finite set of cardinality N = 1 + b1/εc, we obtain

M∞(ε,F ,m) ≤ max
x∈Xm

∣∣Qε(F )|x
∣∣ ≤ d∑

i=0

(
m

i

)⌊
1

ε

⌋i
.

where d = Pdim(Qε(F )|x) ≤ Pdim(Qε(F )) ≤ Pdim(F ) by Theorem 11.3 since
Qε(·) is non-decreasing.



Bounding with the Fat Shattering Dimension: A general upper
bound

Theorem 12.7 Let F be a set of functions from a domain X to the bounded
interval [0,B]. Let d = fatF (ε/4). Then for any ε > 0,

M∞(ε,F ,m) < 2(mb2)dlog2 ye

where b = b2B/εc and y =
∑d

i=1

(
m
i

)
bi .

Theorem 12.8 Let F be a set of functions from a domain X to the bounded
interval [0,B]. Let d = fatF (ε/4). Then any ε > 0 and for all m ≥ d

N∞(ε,F ,m) < 2

(
4mB2

ε2

)d log2(4eBm/(dε))

.



Proof of Theorem 12.7

Proof of Theorem 12.7 By Lemma 12.3 with α = ε/2

M∞(ε,F ,m) ≤M∞(ε,Qε/2(F ),m).

By a simple rescaling, Lemma 12.9 (next slide) shows that

M(ε,Qε/2(F ), d∞) ≤ 2(mb2)dlog2 y
′e

where

y ′ =

fatQε/2(F )(ε/2)∑
i=1

(
m

i

)
bi ≤

fatF (ε/4)∑
i=1

(
m

i

)
bi = y



Proof of Theorem 12.7

Lemma 12.9 Let Y = {0, 1, . . . , b}, and suppose |X | = m and H ⊂ Y X has
fatH(1) = d Then

M(2,H, d∞) ≤ 2(mb2)dlog2 ye

where y =
∑d

i=1

(
m
i

)
bi .

Proof of Lemma 12.9 Fix b ≥ 3 as the result trivially holds otherwise. For given
X and G ⊂ Y X , define TX ,G as

TX ,G = {(A, r) : G 1-shatters ∅ 6= A ⊂ X , witnessed by r : A→ Y }

For k ≥ 2 and m ≥ 1, define t(k ,m) as

t(k ,m) = min{|TX ,G | : |X | = m,G ⊂ Y X , |G | = k, G is 2-separated}

or take t(k ,m) to be infinite if the minimum is over the empty set.



Proof of Theorem 12.7

Proof of Lemma 12.9 Note that the number of pairs (A, r) with A 6= ∅ and
|A| ≤ d is less than

y =
d∑

i=1

(
m

i

)
bi

If t(k,m) ≥ y , then every 2-separated set G with |G | = k 1-shatters some A with
|A| > d i.e., fatG (1) > d . But fatH(1) = d , so if t(k ,m) ≥ y then
M(2,H, d∞) < k .
It suffices to prove that

t
(

2(mb2)dlog2 ye,m
)
≥ y

for all d ≥ 1 and all m ≥ 1.



Proof of Theorem 12.7

Proof of Lemma 12.9 Prove t
(
2(mb2)dlog2 ye,m

)
≥ y for all d ≥ 1 and all

m ≥ 1.

• Let G be a 2-separated set with |G | = k = 2(mb2)dlog2 ye. Split G into K/2
arbitrary pairs.

• One can show (pigeonhole) that there are x0 ∈ X , i , j with j ≥ i + 2 such
that at least k/(mb2) of these pairs, say (g1, g2), satisfy
(g1(x0), g2(x0)) = (i , j). Let G1 be a set of such g1’s and G2 a set of such
g2’s. Then |G1| = |G2| > k/(mb2) and they are 2-separated on X \ {x0}.

• Hence there are at least t(
⌊
k/mb2

⌋
,m − 1) pairs (A, r) such that G1 (G2)

1-shatters A ∈ X \ {x0} witnessed by r .

• If both G1 and G2 1-shatter A witnessed by r , then G 1-shatters A ∪ {x0},
witnessed by r ′ with r ′(x) = r(x) if x ∈ X \ {x0} and r ′(x0) = b(i + j)/2c.
Hence

t(k ,m) ≥ 2t

(⌊
k

mb2

⌋
,m − 1

)
.

The proof follows by induction.



Proof of Theorem 12.7

Lemma If α < 2ε then

fatQα(F )(ε) ≤ fatF (ε− α/2)

and, in particular,
fatQε/2(F )(ε/2) ≤ fatF (ε/4)

Proof
(Qα(fb))(xi )− ri ≥ ε if bi = 1

(Qα(fb))(xi )− ri ≤ −ε if bi = 0

implies
fb(xi )− ri ≥ ε if bi = 1

fb(xi )− ri ≤ −ε+ α if bi = 0



Bounding with the Fat Shattering Dimension: A general lower
bound

Theorem 12.10 Let F be a set of real-valued functions and let ε > 0. Let
d = fatF (ε/4). Then for all m ≥ fatF (16ε),

N∞(ε,F ,m) ≥ N1(ε,F ,m) ≥ efatF (16ε)/8.



Proof of Theorem 12.10

Lemma Let d = fatF (16ε). If m ≥ d , then

N1(ε,F ,m) ≥ N1(2ε,F , d).

Proof Let m = kd + r where k ≥ 1 and 0 ≤ r < d . Let z be the sample of
length m obtained by concatenating k copies of x and adjoining the first r
elements of x . For f , g ∈ F ,

d1(f|z , g|z) =
1

m

m∑
i=1

|f (zi )− g(zi )|

=
k

kd + r

d∑
i=1

|f (xi )− g(xi )|+
1

kd + r

r∑
i=1

|f (xi )− g(xi )|

≥ kd

kd + r
d1(f|x , g|x)

Since kd/(kd + r) > 1/2, d1(f|z , g|z) < ε implies d1(f|x , g|x) < 2ε.



Proof of Theorem 12.10

Lemma If d = fatF (16ε), then N1(2ε,F , d) ≥ ed/8

Proof Fix a sample x of length d that is 16ε-shattered. There is r ∈ Rd such
that for every b ∈ {0, 1}d , there is fb ∈ F such that

fb(xi ) ≥ ri + 16ε if bi = 1, fb(xi ) ≤ ri − 16ε if bi = 0 for i = 1 . . . , d

Let G = {fb : b ∈ {0, 1}d} be such a set of 2d functions.
Suppose C is a 2ε cover of F|x . For each c ∈ C , there is g ∈ G satisfying
d1(c|x , g|x) < 2ε and so{

g ′ ∈ G : d1(g ′|x , c|x) < 2ε
}
⊂
{
g ′ ∈ G : d1(g ′|x , g|x) < 4ε

}
One can show that

∣∣∣{g ′ ∈ G : d1(g ′|x , g|x) < 4ε
}∣∣∣ ≤ 2de−d/8 which means that

each element of C covers at most 2de−d/8 elements of G . Hence

|C | ≥ |G |
2de−d/8

= εd/8.



Fat-shattering dimension characterizes covering numbers

Theorem 12.11 Let F be a set of functions from a domain X to the bounded
interval [0,B]. Then for any ε > 0, if m ≥ fatF (ε/r) ≥ 1,

log2 ε

8
fatF (16ε) ≤ log2N1(ε,F ,m)

≤ log2N∞(ε,F ,m) ≤ 3fatF (ε/4) log2
2

(
4eBm

ε

)
.

Remark. If a class has finite fat-shattering dimension, then the covering
number is a sub-exponential function of m.



Example

Theorem 12.12 Let F be a set of functions of total variation at most V ,
mapping from the interval [0, 1] into [0, 1]. Then for any ε > 0 and for all m,

N∞(ε,F ,m) < 2

(
4m

ε2

)(1+2V/ε) log2(2em/V )

.

Proof. Recall that fatF (γ) = 1 + bV /(2γ)c. Then by Theorem 12.8 with B = 1
and d = 1 + b2V /εc, we have

N∞(ε,F ,m) ≤ 2

(
4mB2

ε2

)d log2(4eBm/(dε))

< 2

(
4m

ε2

)(1+2V/ε) log2(2em/V )

.



Example

Theorem 12.13 Let F be a set of real-valued functions. Let γ > 0 and let
d = fatF (γ/8). Then

N∞(γ/2, πγ(F ), 2m) ≤ 2(128m)d log2(32em/d)

where πγ(u) = max(1/2− γ,min(1/2 + γ, u)).

Proof We may assume πγ(F ) maps into [0, 2γ]. Then by Theorem 12.8 with
B = 2γ and ε = γ/2, we have

N∞(γ/2, πγ(F ),m) ≤ 2

(
4mB2

ε2

)d log2(4eBm/(dε))

= 2(64m)d log2(32em/d).

Remark The upper bound in Theorem 10.3

Pm (∃f ∈ F : erP(f ) ≥ êrγz (f ) + ε) ≤ 2N∞(γ/2, πγ(F ), 2m)e−ε
2m/8

≤ 4(128m)d log2(32em/d)e−ε
2m/8



Comparing the Two Approaches

• We have seen that if F is uniformly bounded,

N∞(ε,F ,m) ≤
(

c1m

εPdim(F )

)Pdim(F )

and

N∞(ε,F ,m) ≤
(c2m
ε2

)fatF (ε/4) log2(c3m/(fatF (ε/4)ε))
=

(
c3m

εfatF (ε/4)

)c4fatF (ε/4)

for some constants c1, c2, c3 and c4.

• Theorem 11.13 (a):
fatF (ε/4) ≤ Pdim(F ).

• If the two are equal then the first bound is better.
• However, it is possible for fatF (ε/4) to be significantly less than

Pdim(F ). For example for the class F of bounded variation functions,
Pdim(F ) is infinite but fatF (ε/4) is finite.
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Large Margin SEM Algorithms

• For binary classification, SEM algorithms L, which have the property that for
all z ,

êrz(L(z)) = min
h∈H

êrz(h) =
1

m
|{i : h(xi ) 6= yi )}|

are learning algorithms when the clss H has finite VC-dimension.

• In analyzing classification learning algorithms for real-valued function classes,
it is useful to consider algorithms that, given a sample and a parameter
γ > 0, return hypotheses minimizing the sample error with respect to γ,
which is defined as

êrγz (f ) =
1

m
|{i : margin(f (xi ), yi ) < γ}|

where

margin(f (xi ), yi ) =

{
f (xi )− 1/2 if yi = 1
1/2− f (xi ) if yi = 0



Large Margin SEM Algorithms

Definition 13.1 Suppose that F is a set of real functions defined on the domain
X . Then a large margin sample error minimization algorithm (or large margin
SEM algorithm) L for F takes as input a margin parameter γ > 0 and a sample
z ∈

⋃∞
m=1 Z

m, and returns a function from F such that for all γ > 0, all m, and
all z ∈ Zm,

êrγz (L(γ, z)) = min
f∈F

êrγz (f ).



Large Margin SEM Algorithms

Aim. Show that the large margin SEM algorithms for a function class F are
learning algorithms when F has finite fat-shattering dimension. i.e.,

For any probability distribution P on Z = X × {0, 1}, the large margin SEM
algorithm L taking as input γ ∈ (0, 1/2] and a sample z ∈

⋃∞
m=1 Z

m satisfies,
with probability at least 1− δ,

• ∃mL(ε, δ, γ) s.t. ∀ε > 0, erP(L(z)) < optγP(F ) + ε whenever m ≥ mL(ε, δ, γ)

where optγP(F ) = inf f∈F erγP(f ), or equivalently,

• ∀m, ∃εL(m, δ, γ) s.t. erP(L(z)) < optγP(F ) + εL(m, δ, γ).



Large Margin SEM Algorithms as Learning Algorithms

Theorem 13.2 Suppose that F is a set of real-valued functions defined on the
domain X and that L is a large margin SEM algorithm for F . Suppose that
ε ∈ (0, 1) and γ > 0. Then given any probability distribution P on Z for all m,
we have

Pm{erP(L(γ, z)) ≥ optγP(F ) + ε} ≤ 2N∞(γ/2, πγ(F ), 2m)e−ε
m/72 + e−2ε

2m/9.

Proof With probability at least 1− 2N∞(γ/2, πγ(F ), 2m)e−ε
m/72 − e−2ε

2m/9,

erP(L(γ, z)) < êrγz (L(γ, z)) +
ε

3
≤ êrγz (f ∗) +

ε

3
< erγP(f ∗) +

2ε

3

where f ∗ ∈ F is such that erγP(f ∗) < optγP(F ) + ε/3.



Proof of Theorem 13.2

Lemma 13.3 Suppose that f is a real-valued function defined on X , P is a
probability distribution on Z , ε > 0, γ > 0, and m is a positive integer. Then

Pm (êrγz (f ) ≥ erγP(f ) + ε) ≤ e−2ε
2m

Lemma (Theorem 10.4, Uniform convergence)

Pm (∃f ∈ F : erP(f ) ≥ êrγz (f ) + ε) ≤ 2N∞(γ/2, πγ(F ), 2m)e−ε
2m/8.

Proof of Theorem 13.2

• Let f ∗ ∈ F be such that erγP(f ∗) < optγP(F ) + ε/3. Then
êrγz (f ∗) < erγP(f ∗) + ε/3 < optγP(F ) + 2ε/3 with probability at lest

1− e−2ε
2m/9.

• With probability at least 1− 2N∞(γ/2, πγ(F ), 2m)e−ε
2m/72,

erP(f ) < êrγz (f ) + ε/3 for all f ∈ F .

• Hence with probability 1− e−2ε
2m/9 − 2N∞(γ/2, πγ(F ), 2m)e−ε

2m/72

erP(L(γ, z)) < êrγz (L(γ, z)) +
ε

3
≤ êrγz (f ∗) +

ε

3
< optγP(F ) + ε



Large Margin SEM Algorithms as Learning Algorithms

Theorem 13.4 Suppose that F is a set of real-valued functions defined on the
domain X with finite fat-shattering dimension, and that L is a large margin SEM
algorithm for F . Then L is a classification learning algorithm for F . Given
δ ∈ (0, 1) and γ > 0, suppose d = fatπγ(F )(γ/8) ≥ 1. Then the estimation error
of L satisfies

εL(m, δ, γ) ≤
[

72

m

{
d log2

(
32em

d

)
log(128m) + log

(
6

δ

)}]1/2
Furthermore, the sample complexity of L satisfies, for any ε ∈ (0, 1),

mL(ε, δ, γ) ≤ 144

ε2

(
27d log2

(
3456d

ε2

)
+ log

(
6

δ

))
.

Theorem 4.2 For H a set of {0, 1}-valued functions with VC dimension d ,

• εL(m, δ) ≤
[
32
m

{
d log

(
2em
d

)
+ log

(
4
δ

)}]1/2
• mL(ε, δ) ≤ 64

ε2

(
2d log

(
12
ε

)
+ log

(
4
δ

))



Proof of Theorem 13.4

For d = fatπγ(F )(γ/8) ≥ 1,

Pm(erP(L(γ, z)) > optγP(F ) + ε)

≤ 2N∞(γ/2, πγ(F ), 2m)e−ε
m/72 + e−2ε

2m/9 (Thm 13.2)

≤ 3 max(1,N∞(γ/2, πγ(F ), 2m))e−ε
m/72

< 6(128m)d log2(32em/d)e−ε
2m/72 := δ∗ (Thm 12.13)

δ∗ ≤ δ when

• ε ≥
[

72

m

{
d log2

(
32em

d

)
+ log(128m) + log

(
6

δ

)}]1/2
• m ≥ 72

ε2

(
d

log 2
(logm)2 + 14d logm + 7d log

(
32e

d

)
+ log

(
6

δ

))
Bound above logm by using the inequality log a ≤ ab − log b − 1 for
a, b, > 0 and bound above (logm)2 by using the inequality
(log a)2 ≤ 6ab + 3(log(1/b))2 for a > 0, 0 < b < 1 and ab ≥ 1. Therefore

m

2
≥ 72

ε2

(
3d

log 2
log2

(
1728d

ε2 log 2

)
+ 14d log

(
4032d

eε2

)
+ 7d log

(
32e

d

)
+ log

(
6

δ

))



Lower Bounds for Certain Function Classes

Theorem 13.5 Suppose that F is a set of functions mapping into the interval
[0, 1] and that F is closed under addition of constants. Then, if L is any
classification learning algorithm for F , the sample complexity of L satisfies

mL(ε, δ, γ) ≥ max

(
d

320ε2
, 2

⌊
1− ε2

ε2
log

1

8δ(1− 2δ)

⌋)
for 0 < ε < 1, δ < 1/64 and γ > 0, where d = fatπ4γ(F )(2γ) ≥ 1.



Proof of Theorem 13.5

Theorem 5.4 Suppose that H is a set of {0, 1}-valued functions with VC
dimension d . For any learning algorithm L for H the sample complexity of L
satisfies

mL(ε, δ) ≥ max

(
d

320ε2
, 2

⌊
1− ε2

ε2
log

(
1

8δ(1− 2δ)

)⌋)
for all 0 < ε < 1 and δ < 1/64.

Proof of Theorem 13.5 Construct H as follows.

• Choose S ⊂ X so that |S | = d = fatπ4γ(F )(2γ) and S is 2γ-shattered by

π4γ(F ) witnessed by r ∈ [1/2− 2γ, 1/2 + 2γ]d .

• Let T ⊂ S be the set of xi with ri ∈ [1/2− 2γ, 1/2]. WLOG, assume
|T | ≥ d/2. Then T is γ-shattered by π2γ(F ) witnessed by
(1/2− γ, · · · , 1/2− γ).

• Let F0 ⊂ F be the set of functions f ∈ F such that for all x ∈ T ,
|f (x)− 1/2| ≥ γ. It is possible since F is closed under addition of constants.

• The set H of {0, 1}-valued functions on T defined by

H = {x 7→ sign(f (x)− 1/2) : f ∈ F0}

is the set of all {0, 1}-valued functions on T , and hence VCdim(H) ≥ d/2.



Proof of Theorem 13.5

Proof of Theorem 13.5 For any P on Z and any ε, if m ≥ mL(ε, δ, γ)

Pm(erP(L(γ, z)) < optγP(F ) + ε) ≥ 1− δ

where we have

optγP(F ) = inf
f∈F

erγP(f ) ≤ inf
f∈F0

erγP(f )

= inf
h∈H

erP(h) ∵ ∀f ∈ F0, |f (x)− 1/2| ≥ γ

Thus z 7→ sign(L(γ, z)− 1/2) is a learning algorithm for H with mL(ε, δ, γ).



From Theorems 13.4 and 13.5,

c1fatπ4γ(F )(2γ)

ε2
≤ mL(ε, δ, γ) ≤

c2fatπγ(F )(γ/8)

ε2
.

• Only the behavior of functions in F near the threshold value 1/2 influences
the complexity of F for classification learning, whereas the fat-shattering
dimension in these bounds measures the complexity of functions in πγ(F )
over the whole of their [1/2− γ, 1/2 + γ] range.

• The condition that F is closed under addition of constants ensures that the
complexity of F is uniform over this range.

• Let F = {f : N 7→ [1/2 + α,∞)} for α < 0. Then fatπγ(F )(γ/8) is infinite
but there is a classification learning algorithm for F . The class F is complex,
but the complexity of the functions in F is restricted to a range that does
not include the threshold, and hence this complexity is irrelevant for
classification learning.



Using the Pseudo-Dimension

Theorem 13.6 If F is a set of real-valued functions with finite pseudo-dimension,
and L is a large margin SEM algorithm for F . Let d = Pdim(F ). For all
δ ∈ (0, 1), all M, and γ > 0, its estimation error satisfies

εL(m, δ, γ) ≤
[

72

m

{
d log

(
8em

d

)
+ log

(
3

δ

)}]1/2
.

Remark (Theorem 4.2) For H a set of {0, 1} valued functions with VC
dimension d ,

εL(m, δ) ≤
[

32

m

{
d log

(
2em

d

)
+ log

(
4

δ

)}]1/2
Let H = {x 7→ sign(f (x)− 1/2) : f ∈ F}. Since VCdim(H) ≤ Pdim(F ) and
optP(H) ≤ optγP(F ), Theorem 13.6 is weaker than the VC-dimension results.

But using the fat-shattering dimension can give a significant improvement.

εL(m, δ, γ) ≤
[

72

m

{
d log2

(
32em

d

)
log(128m) + log

(
6

δ

)}]1/2
where d = fatπγ(F )(γ/8). In next chapter, we see examples of neural network
classes that have finite fat-shattering dimension, but whose thresholded versions
have infinite VC-dimension.



Relative Uniform Convergence Results

Theorem 13.5 implies that the rate of uniform convergence of erP(f ) to êrγz (f )
can be no faster than 1/

√
m. But as the result of Section 5.5, erP(f ) converges

more quickly to (1 + α)êrγz (f ) for any fixed α > 0.

Theorem 13.7 Suppose that F is a set of real-valued functions defined on X .
Then for given any probability distribution P on Z , any γ > 0 and any α, β > 0,

Pm (∃f ∈ F : erP(f ) > (1 + α)êrγz (f ) + β) ≤ 4N∞(γ/2, πγ(F ), 2m)e−αβm/(4(1+α)).

Theorem 10.4

Pm (∃f ∈ F : erP(f ) ≥ êrγz (f ) + ε) ≤ 2N∞(γ/2, πγ(F ), 2m)e−ε
2m/8.
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